1. C. Li, S. Zhao, B. Pentecost, Y. Ren, and Z. Guan, A fourth-order Cartesian grid method with FFT acceleration for elliptic and parabolic problems on irregular domains and arbitrarily curved boundaries, Journal of Scientific Computing, accepted, (2025).
  2. Y. Ren and S. Zhao, A multigrid-based fourth order finite difference method for elliptic interface problems with variable coefficients, International Journal of Numerical Analysis and Modeling, accepted, (2025).
  3. Y. Ren and S. Zhao, A high-order hybrid approach integrating neural networks and fast Poisson solvers for elliptic interface problems, Computation, 13, 83, (2025).
  4. S. Amihere, Y. Ren, W. Geng, and S. Zhao, A new boundary condition for the nonlinear Poisson-Boltzmann equation in electrostatic analysis of proteins, Journal of Computational Physics, 528, 113844, (2025).
  5. H. Yang, G. Long, Y. Ren, and S. Zhao, An augmented fourth order domain-decomposed method with fast algebraic solvers for three-dimensional Helmholtz interface problems, Journal of Computational Physics, 524, 113742, (2025).
  6. S.K. Pandey, A. Chakravorty, S. Zhao, and E. Alexov, On delivering polar solvation free energy of proteins from energy minimized structures using a regularized super-Gaussian Poisson-Boltzmann modelJournal of Computational Chemistry46, e27496, (2025).
  7. Y. Shao, Z. Chen, and S. Zhao, Modeling and analysis of ensemble average solvation energy and solute-solvent interfacial fluctuations, Computational and Mathematical Biophysics, 12, 20240017, (2024).
  8. Y. Shao, Z. Chen, and S. Zhao, A p-Laplacian approach and its analysis for the calculation of ensemble average solvation energyCommunications in Information and System24, 275-311, (2024).
  9. Y. Ren, S. Amihere, W. Geng, and S. Zhao, Comparison of three matched interface and boundary (MIB) schemes for solving the nonlinear Poisson-Boltzmann equationCommunications in Information and Systems24, 231-251, (2024).
  10. D. Nguyen, S. Mansur, L. Ciesla, N. Gray, S. Zhao, and Y. Bao, A combined computational and experimental approach to Study TrkB Binders for potential Neurodegenerative diseaseMolecules29, 3992, (2024).
  11. H. Yang, S. Zhao, and G. Long, A MAC grid based FFT-AMIB solver for incompressible Stokes flows with interfaces and singular forcesJournal of Computational and Applied Mathematics450, 116019, (2024).
  12. S. Ahmed Ullah, X. Yang, B. Jones, S. Zhao, W. Geng, and G.W. Wei, Bridging Eulerian and Lagrangian Poisson-Boltzmann solvers by ESESJournal of Computational Chemistry45, 306-320, (2024).
  13. S. Zhao, I. Ijaodoro, M. McGowan, E. Alexov, Calculation of electrostatic free energy for the nonlinear Poisson-Boltzmann model based on the dimensionless potential, Journal of Computational Physics, 497, 112634, (2024).
  14. C. Li, Y. Ren, G. Long, E. Boerman, and S. Zhao, A fast Sine transform accelerated high order finite difference method for parabolic problems over irregular domainsJournal of Scientific Computing95, 49 (2023).
  15. Y. Ren and S. Zhao, A FFT accelerated fourth order finite difference method for solving three-dimensional elliptic interface problemsJournal of Computational Physics477, 111924, (2023).
  16. Y. Shao, M. McGowan, S. Wang, E. Alexov, and S. Zhao, Convergence of a diffuse interface Poisson-Boltzmann (PB) model to the sharp interface PB model: a unified regularization formulationApplied Mathematics and Computation436, 127501, (2023).
  17. S. Amihere, W. Geng, and S. Zhao, Benchmarking electrostatic free energy of the nonlinear Poisson-Boltzmann model for the Kirkwood sphereCommunications in Information & Systems22(3), 305-315, (2022).
  18. S. Wang, Y. Shao, E. Alexov, and S. Zhao, A regularization approach for solving the super-Gaussian Poisson-Boltzmann model with heterogeneous dielectric functionsJournal of Computational Physics464, 111340, (2022).
  19. T. Hazra and S. Zhao, Physics-guided multiple regression analysis for calculating electrostatic free energies of proteins in different reference statesCommunications in Information & Systems22(2), 187-221, (2022).
  20. Y. Ren, H. Feng, and S. Zhao, A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domainsJournal of Computational Physics, 448, 110762, (2022).
  21. H. Feng and S. Zhao, A multigrid based finite difference method for solving parabolic interface problemElectronic Research Archive29, 3141-3170, (2021).
  22. C. Li, G. Long, Y. Li, and S. Zhao, Alternating Direction Implicit (ADI) methods for solving two dimensional parabolic interface problems with variable coefficientsComputation9(7), 79, (2021).
  23. K. Liu, L. Song, and S. Zhao, A new over-penalized weak Galerkin method. Part I: Second order elliptic problemsDiscrete and Continuous Dynamical Systems Series B26, 2411-2428, (2021).
  24. B. Jones, S. Ahmed Ullah, S. Wang, and S. Zhao, Adaptive pseudo-time methods for the Poisson-Boltzmann equation with Eulerian solvent excluded surfaceCommunications in Information & Systems21(1), 85-123, (2021).
  25. ​S. Wang, E. Alexov, and S. Zhao, On regularization of charge singularities in solving the Poisson-Boltzmann equation with a smooth solute-solvent boundaryMathematical Biosciences and Engineering18(2) 1370-1405, (2021).
  26. H. Feng, G. Long, and S. Zhao, FFT-based high order central difference schemes for Poisson’s equation with staggered boundaries, Journal of Scientific Computing86, 7, (2021).​
  27. ​A. Lee, W. Geng, and S. Zhao, Regularization methods for the Poisson-Boltzmann equation: comparison and accuracy recoveryJournal of Computational Physics426, 109958, (2021).
  28. C. Li, M. McGowan, E. Alexov, and S. Zhao, A Newton-like iterative method implemented in the DelPhi for solving the nonlinear Poisson-Boltzmann equation, Mathematical Biosciences and Engineering17(6), 6259-6277, (2020).​​
  29. H. Feng and S. Zhao, A fourth order finite difference method for solving elliptic interface problems with the FFT accelerationJournal of Computational Physics419, 109677, (2020).
  30. S. Ahmed Ullah and S. Zhao, Pseudo-transient ghost fluid methods for the Poisson-Boltzmann equation with a two-component regularizationApplied Mathematics and Computation380, 125267, (2020).
  31. C. Li, Z. Wei, G. Long, C. Campbell, S. Ashlyn, and S. Zhao, Alternating direction ghost-fluid methods for solving the heat equation with interfacesComputers and Mathematics with Applications80, 714-732, (2020).​
  32. H. Feng and S. Zhao, FFT-based high order central difference schemes for the three-dimensional Poisson equation with various types of boundary conditionsJournal of Computational Physics410, 109391, (2020).​
  33. A. Chakravorty, S. Pandey, S. Pahari, S. Zhao, and E. Alexov, Capturing the effects of explicit waters in implicit electrostatics modeling: Qualitative justification of Gaussian-based dielectric models in DelPhiJournal of Chemical Information and Modeling60, 2229-2246, (2020).
  34. S. Wang, A. Lee, E. Alexov, and S. Zhao, A regularization approach for solving Poisson’s equation with singular charge sources and diffuse interfacesApplied Mathematics Letters102, 106144, (2020).
  35. SK Panday, MHB Shashikala, A. Chakravorty, S. Zhao and E. Alexov, Reproducing ensemble averaged electrostatics with Super-Gaussian-based smooth dielectric function: Application to electrostatic component of binding energy of protein complexesCommunications in Information and Systems19, 405-423, (2019).
  36. H. Feng, G. Long, and S. Zhao, An augmented matched interface and boundary (MIB) method for solving elliptic interface problem, Journal of Computational and Applied Mathematics361, 426-433, (2019).
  37. T. Hazra, S. Ahmed-Ullah, S. Wang, E. Alexov, and S. Zhao, A super-Gaussian Poisson-Boltzmann model for electrostatic solvation free energy calculation:  smooth dielectric distribution for protein cavities and in both water and vacuum statesJournal of Mathematical Biology79, 631-672, (2019).
  38. C. Arghya, Z. Jia, L. Li, S. Zhao, and E. Alexov, Reproducing the ensemble average polar solvation energy of a protein from a single structure: Gaussian-based smooth dielectric function for macromolecular modelingJournal of Chemical Theory and Computation14, 1020-1032, (2018)
  39. Z. Wei, C. Li, and S. Zhao, A spatially second order alternating direction implicit (ADI) method for three dimensional parabolic interface problemsComputers and Mathematics with Applications75, 2173-2192, (2018).
  40. L. Song, S. Zhao, and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Applied Numerical Mathematics, 128, 65-80, (2018).
  41. J. Hu, S. Zhao, and W. Geng, Accurate pKa computation using matched interface and boundary (MIB) method based Poisson-Boltzmann solverCommunication in Computational Physics23, 520-539, (2018).
  42. W. Deng, J. Xu, and S. Zhao, On developing stable finite element methods for pseudo-time simulation of biomolecular electrostaticsJournal of Computational and Applied Mathematics330, 456-474, (2018).
  43. L. Song and S. Zhao, Symmetric interior penalty Galerkin approaches for tow-dimensional parabolic interface problems with low regularity solutionsJournal of Computational and Applied Mathematics330, 356-379, (2018).
  44. W. Geng and S. Zhao, A two-component Matched Interface and Boundary (MIB) regularization for charge singularity in implicit solvationJournal of Computational Physics351, 25-39, (2017)
  45. ​L. Song, K. Liu, and S. Zhao, A weak Galerkin method with an over-relaxed stabilization for low regularity elliptic problems, Journal of Scientific Computing71, 195-218, (2017).
  46. C. Li and S. Zhao, A matched Peaceman-Rachford ADI method for solving parabolic interface problems, Applied Mathematics and Computation299, pp. 28-44, (2017).
  47. L. Wilson and S. Zhao, Unconditionally stable time splitting methods for the electrostatic analysis of solvated biomoleculesInternational Journal of Numerical Analysis and Modeling13, pp. 852-878, (2016).
  48. L. Mu, J. Wang, X. Ye, and S. Zhao, A new weak Galerkin finite element method for elliptic interface problemsJournal of Computational Physics, 325, pp. 157-173, (2016).
  49. D.D. Nguyen and S. Zhao, A second order dispersive FDTD algorithm for transverse electric Maxwell’s equations with complex interfacesComputers and Mathematics with Applications, 71, pp. 1010-1035, (2016).
  50. Y. Zhang, D.D. Nguyen, K. Du, J. Xu, and S. Zhao, Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic wavesAdvances in Applied Mathematics and Mechanics8, pp. 353-385, (2016).
  51. C. Li and S. Zhao, Efficient numerical schemes for fractional water wave modelsComputers and Mathematics with Applications, 71, pp. 238-254, (2016).
  52. W. Deng, X. Zhufu, J. Xu, and S. Zhao, A new discontinuous Galerkin method for the nonlinear Poisson-Boltzmann equationApplied Mathematics Letters49, pp. 126-132, (2015).
  53. D.D. Nguyen and S. Zhao, A new high order dispersive FDTD method for Drude material with complex interfacesJournal of Computational and Applied Mathematics, 285, pp. 1-14, (2015).
  54. S. Zhao, A matched alternating direction implicit (ADI) method for solving the heat equation with interfacesJournal of Scientific Computing, 63 , pp. 118-137, (2015).
  55. Duc D. Nguyen and S. Zhao, Time-domain matched interface and boundary (MIB) modeling of Debye dispersive media with curved interfacesJournal of Computational Physics, 278 , pp. 298-325, (2014).
  56. L. Mu, J. Wang, X. Ye, and S. Zhao, A numerical study on the weak Galerkin method for the Helmholtz equationCommunication in Computational Physics, 15 , pp. 1461-1479, (2014).
  57. S. Zhao and G.W. Wei, A unified discontinuous Galerkin framework for time integrationMathematical Methods in the Applied Sciences, 37 , pp. 1042-1071, (2014).
  58. Wufeng Tian and S. Zhao, A fast ADI algorithm for geometric flow equations in biomolecular surface generationInternational Journal for Numerical Methods in Biomedical Engineering, 30 , pp. 490-516, (2014).
  59. Duc D. Nguyen and S. Zhao, High order FDTD methods for transverse magnetic modes with dispersive interfacesApplied Mathematics and Computation, 226 , pp. 699-707, (2014).
  60. S. Zhao, Operator splitting ADI schemes for pseudo-time coupled nonlinear solvation simulationsJournal of Computational Physics, 257 , pp. 1000-1021, (2014).
  61. L. Mu, J. Wang, X. Ye, G.W. Wei, and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, Journal of Computational Physics, 250, pp. 106-125, (2013).
  62. S. Rosencrans, X. Wang, and S. Zhao, Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurementsDiscrete and Continuous Dynamics Systems, 33, pp. 5441-5455,(2013).
  63. W. Geng and S. Zhao, Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equationMolecular Based Mathematical Biology, 1, pp. 109 – 123, (2013).
  64. Zhan Chen, S. Zhao, Jaehun Chun, Dennis G. Thomas, Nathan A. Baker, Peter W. Bates, and G.W. Wei, Variational approach for nonpolar solvation analysisJournal of Chemical Physics, 137, 084101, (2012).
  65. S. Zhao, Pseudo-time coupled nonlinear models for biomolecular surface representation and solvation analysisInternational Journal for Numerical Methods in Biomedical Engineering, 27, pp. 1964-1981, (2011).
  66. Pengfei Yao and S. Zhao, A new boundary closure scheme for the multiresolution time-domain (MRTD) methodIEEE Transaction on Antennas and Propagation, 59, pp. 3305-3312, (2011).
  67. S. Zhao, High order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous mediaOptics Letters, 36, pp. 3245-3247, (2011).
  68. S. Zhao, A fourth order finite difference method for waveguides with curved perfectly conducting boundariesComputer Methods in Applied Mechanics and Engineering, 199, pp. 2655-2662, (2010).
  69. S. Zhao, High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfacesJournal of Computational Physics 229, pp. 3155-3170, (2010).
  70. P. Bates, Z. Chen, Y. Sun, G.W. Wei, and S. Zhao, Geometric and potential driving formation and evolution of biomolecular surfacesJournal of Mathematical Biology 59, pp. 193-231, (2009).
  71. S. Zhao, High order vectorial analysis of waveguides with curved dielectric interfacesIEEE Microwave and Wireless Components Letters 19, pp. 266-268, (2009).
  72. S. Rosencrans, X. Wang, W. Winter, and S. Zhao, Measuring the insulating ability of anisotropic thermal conductors via principal Dirichlet eigenvalueEuropean Journal of Applied Mathematics 20, pp. 231-246, (2009).
  73. S. Zhao and G.W. Wei, Matched interface and boundary (MIB) for the implementation of boundary conditions in high order central finite differencesInternational Journal for Numerical Methods in Engineering, 77, pp. 1690-1730, (2009).
  74. S. Zhao, Full-vectorial matched interface and boundary (MIB) method for the modal analysis of dielectric waveguidesIEEE/OSA Journal of Lightwave Technology 26, pp. 2251-2259, (2008).
  75. P. Bates, G.W. Wei and S. Zhao, Minimal molecular surfaces and their applications , Journal of Computational Chemistry29, pp. 380-391, (2008).
  76. S. Zhao, On the spurious solutions in the high-order finite difference methods for eigenvalue problemsComputer Methods in Applied Mechanics and Engineering 196, pp. 5031-5046, (2007).
  77. G.W. Wei and S. Zhao, On the validity of “A proof that the discrete singular convolution (DSC)/Langrange-distributed approximation function (LDAF) method is inferior to high order finite differences”Journal of Computational Physics226, pp. 2389-2392, (2007).
  78. Ge Wang, Haiou Shen, Wenxiang Cong, Shan Zhao and G.W. Wei, Temperature modulated bioluminescence tomographyOptics Express14(17), pp. 7852-7871, (2006).
  79. Y.C. Zhou, S. Zhao, M. Feig, and G.W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sourcesJournal of Computational Physics213, pp. 1-30, (2006).
  80. S. Zhao and G.W. Wei, Option valuation by using discrete singular convolutionApplied Mathematics and Computation167, pp. 383-418, (2005).
  81. S.N. Yu, S. Zhao, and G.W. Wei, Local spectral time-splitting method for first and second order partial differential equationsJournal of Computational Physics206, pp. 727-780, (2005).
  82. S. Zhao, G.W. Wei, and Y. Xiang, DSC analysis of free-edged beams by an iteratively matched boundary methodJournal of Sound and Vibration284, pp. 487-493, (2005).
  83. S. Zhao and G.W. Wei, High-order FDTD methods via derivative matching for Maxwell’s equations with material interfacesJournal of Computational Physics200, pp. 60-103, (2004).
  84. S. Zhao and G.W. Wei, Tensor product derivative matching for wave propagation in inhomogeneous mediaMicrowave and Optical Technology Letters43-1, pp. 69-77, (2004).
  85. G. Bao, G.W. Wei, and S. Zhao, Numerical solution of the Helmholtz equation with high wavenumbersInternational Journal for Numerical Methods in Engineering59, pp. 389-408, (2004).
  86. S. Zhao and G.W. Wei, Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher’s equationSIAM Journal on Scientific Computing25, pp. 127-147, (2003).
  87. Z.H. Shao, G.W. Wei, and S. Zhao, DSC time-domain solution of Maxwell’s equationsJournal of Computational Physics189, pp. 427-453, (2003).
  88. G. Bao, G.W. Wei, and S. Zhao, Local spectral time-domain method for electromagnetic wave propagationOptics Letters28(7), pp. 513-515, (2003).​
  89. S. Zhao and G.W. Wei, Jump process for the trend estimation of time seriesComputational Statistics and Data Analysis, 42(1-2), pp. 219-241, (2003).
  90. G.W. Wei and S. Zhao, Synchronization and information processing by an on-off couplingPhysical Review E,  65(5), 056210, (2002).

  1. Y. Ren, C. Li, G. Long, and S. Zhao, A multigrid-based high order finite difference method for parabolic interface problems with variable coefficients, ICIAM2023 Special Issue on Recent Advances on two-phase flows, fluid-structure interactions, and interface problems, accepted, (2025).