
Publications
2023
25. Kansara, S.; Kang, H.; Ryu, S.; Sun, H. H.*; Hwang, J.-Y. Basic Guidelines of the First-principles Calculations for Suitable Selection of Electrochemical Li Storage Materials: A Review. J. Mater. Chem. A2023, 11, 24482-24518. https://doi.org/10.1039/D3TA05042D
24. Park, H.; Kang, H.; Kim, H.; Kansara, S.; Allen, J. L.; Tran, D. T.; Sun, H. H.*; Hwang, J.-Y. A Strategy for High-Energy Li-S Battery Coupling with a Li Metal Anode and Sulfurized Polyacrylonitrile Cathode. ACS Appl. Mater. Interfaces2023, 15, 45876-47885. https://doi.org/10.1021/acsami.3c08876
23.Allen, J. L.; Ren, X.; Sun, H. H.; Tran, D. T. High Conductivity and Rate Capability of NaNb13O33 Wadsley-Roth Phase as a Fast-Charging Li-ion Anode. ChemElectroChem 2023, 10, 202300267. https://doi.org/10.1002/celc.202300267
22. Sun, H. H.*; Pollard, T.; Borodin, O.; Xu, K.; Allen, J. L. Degradation of High Nickel Li-ion Cathode Materials Induced by Exposure to Fully-Charged State and Its Mitigation. Adv. Energy Mater. 2023, 13, 2204360. https://doi.org/10.1002/aenm.202204360
2022
21. Sun, H. H.; Pastel, G.; Zhang, S.; Tran, D.; Allen, J. L. Structural Optimization of Al-doped Li[Ni0.90Co0.05Mn0.05]O2 Cathode for Li-Ion Batteries. J. Electrochem. Soc. 2022, 169, 110542. https://iopscience.iop.org/article/10.1149/1945-7111/aca223/meta
20. Park, G.-T.; Sun, H. H.; Noh, T.-C.; Maglia, F.; Kim, S.-J.; Lamp, P.; Sun, Y.-K. Nanostructured Co-Free Layered Oxide Cathode that Affords Fast-Charging Lithium-Ion Batteries for Electric Vehicles. Adv. Energy Mater.2022, 12, 220719. *Co-first author.
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202202719?af=
2021
19. Sun, H. H.*; Kim, U. H.*; Park, J.-H.; Park, S.-W.; Seo, D.-H.; Heller, A.; Mullins, C. B.; Sun, Y.-K. Transition Metal-doped Ni-rich Layered Cathode Materials for Durable Li-ion Batteries. Nature Commun.2021, 12, 6552. *Co-first author. https://www.nature.com/articles/s41467-021-26815-6#citeas
*Listed in Nature Communications’ Top 25 Chemistry and Materials Sciences Articles (https://www.nature.com/collections/gagdjjgcgj)
18. Marquez-Montes, R. A.; Kawashima, K.; Son, Y. S.; Sun, H. H.; Celio, H.; Ramos-Sanchez, V. H.; Mullins, C. B. Mass Transport-Enhanced Electrodeposition of Amorphous Ni-S-P-O Films on Nickel Foam for Electrochemical Water Splitting. J. Mater. Chem. A.2021, 9, 7736 – 7749. https://pubs.rsc.org/en/content/articlehtml/2021/ta/d0ta12097a
17. Chen, Q.; Li, H.; Meyerson, M. L.; Rodriguez, R.; Kawashima, K.; Weeks, J. A.; Sun, H. H.; Xie, Q.; Lin, J.; Henkelman, G.; Heller, A.; Peng, D.-L.; Mullins, C. B. Li-Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries. ACS Appl. Mater. Interfaces2021, 13, 9985 – 9993. https://pubs.acs.org/doi/10.1021/acsami.0c21195
16. Ryu, H.-H.; Sun, H. H.; Myung, S.-T.; Yoon, C. S.; Sun, Y.-K. Reducing Cobalt from Lithium-ion Batteries for the Electric Vehicle Era. Energy Environ. Sci.2021, 14, 844 – 852. https://pubs.rsc.org/en/content/articlehtml/2021/ee/d0ee03581
2020
15. Sun, H. H.; Dolocan, A.; Weeks, J. A.; Heller, A.; Mullins, C. B. Stabilization of Highly Ni-rich Layered Oxide Cathode Through Flower-Petal Grain Array. ACS Nano2020, 14, 17142 – 17150. https://pubs.acs.org/doi/10.1021/acsnano.0c06910
14. Sun, H. H.; Ryu, H. H.; Kim. U. H.; Week, J. A.; Sun, Y.-K.; Heller, A.; Mullins, C. B. Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-rich Cathodes. ACS Energy Lett. 2020, 5, 1136 – 1146. https://pubs.acs.org/doi/10.1021/acsenergylett.0c00191
*Listed in ACS Energy Letters’ Most-Cited Open Access Articles in 2020
13. Weeks, J. A.; Zuiker, M.; Srinivasan, H.; Sun, H.-H.; Beccar, P.; Burrow, J.; Heller, A.; Mullins, C. B. A Stable Lead (II) Oxide-Carbon Composite Anode Candidate for Secondary Lithium Batteries. J. Electrochem. Soc. 2020, 167, 060509.
https://iopscience.iop.org/article/10.1149/1945-7111/ab8116
12. Rodriguez, R.; Edison, R. A.; Stephens, R. M.; Sun, H.-H.; Heller, A.; Mullins, C. B. Separator-Free and Concentrated LiNO3 Electrolyte Enable Dendrite-Free Lithium Electrodeposition. J. Mater. Chem. A. 2020, 8, 3999 – 4006. https://doi.org/10.1039/C9TA10929C
2019
11. Weeks, J. A.; Sun, H.-H.; Srinivasan, H.S.; Burrow, J.N.; Guerrera, J.V.; Myerson, M.L.; Dolocan, A.; Heller, A.; Mullins, C.B. Facile Synthesis of a Tin Oxide-Carbon Composite Lithium Battery Anode with High Capacity Retention. ACS Appl. Energy Mater. 2019, 2, 7244 – 7255. https://pubs.acs.org/doi/10.1021/acsaem.9b01205
10. Sun, H.-H.; Dolocan, A.; Weeks, J. A.; Rodriguez, R.; Heller, A.; Mullins, C.B. In-situ Formation of a Multicomponent Inorganic-rich SEI Layer Provides a Fast Charging and High Specific Energy Li-metal Battery. J. Mater. Chem. A.2019, 7, 17782 – 17789.
https://pubs-rsc-org.ezproxy.lib.utexas.edu/en/content/articlelanding/2019/ta/c9ta05063a
9. Sun, H.-H.; Weeks, J. A.; Heller, A.; Mullins, C.B. Nano-Rod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particle. ACS Appl. Energy Mater.2019, 2, 6002 – 6011. https://pubs.acs.org/doi/10.1021/acsaem.9b01116
2018
8. Sun, H.-H.; Hwang, J.-Y.; Yoon, C.S.; Heller, A.; Mullins, C.B. Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF3 Coated Nano-Rod Gradient Na[Ni0.65Co0.08Mn0.27]O2 Cathode for Sodium-Ion Batteries. ACS Nano2018, 12, 12912 – 12922. https://pubs.acs.org/doi/10.1021/acsnano.8b08266
2017 and earlier
7. Sun, H.-H.; Manthiram, A, Impact of Microcrack Generation and Surface Degradation on Nickel-rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-ion Batteries. Chem. Mater.2017, 29, 8486–8493. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.7b03268
6. Kim, G.-P.; Sun, H.-H.; Manthiram, A. Design of a Sectionalized MnO2-Co3O4 Electrode via Selective Electrodeposition of Metal Ions in Hydrogel for Enhanced Electrocatalytic Activity in Metal-air Batteries. Nano Energy2016, 30, 130-137.
https://www.sciencedirect.com/science/article/abs/pii/S2211285516304219
5. Kim, H. M.*; Sun, H.-H.*; Belharouak, I.; Manthiram, A.; Sun, Y.-K. An Alternative Approach to Enhance the Performance of High Sulfur-loading Electrodes for Li-S Batteries. ACS Energy Lett.2016, 1, 136-141. *Co-first author. https://pubs.acs.org/doi/abs/10.1021/acsenergylett.6b00104
4. Jeong, M.-G.; Islam, M.; Du, H. L.; Lee, Y.-S.; Sun, H.-H.; Choi, W.; Lee, J. K.; Chung, K. Y.; Jung, H.-G. Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Material for Lithium-Ion Batteries. Electrochimica Acta. 2016, 209, 299-307. https://www.sciencedirect.com/science/article/abs/pii/S0013468616311343
3. Sun, H.-H.; Choi, W.; Lee, J. K.; Jung, H.-G. Control of Electrochemical Properties of Ni-rich Layered Cathode Materials for Li-ion batteries by Variation of the Mn to Co Ratio. J. Power Sources. 2015, 275, 877-883. https://www.sciencedirect.com/science/article/abs/pii/S0378775314019028
2. Zhai, D.; Wang, H.-H.; Lau, K. C.; Gao, J.; Redfern, P.; Kang, F.; Li, B.; Indacochea, E.; Das, U.; Sun, H.-H.et al. Raman Evidence for Late Stage Disproportionation in a Li-O2 Battery. J. Phys. Chem. Lett. 2014, 5, 2705-2710. https://pubs.acs.org/doi/abs/10.1021/jz501323n
1. Amine, R.; Sun, H.-H.; Sun, H.-J.; Prakash, J. Improved Electrochemical Performance of NH4AlF4-Coated LiCoO2 Cycled over 4.5V. Electrochem. Solid-State Lett. 2013, 13, A101-A104. https://iopscience.iop.org/article/10.1149/1.3430642