Antarctic Seismic Investigations
Given its extensive ice coverage, the geological structure of Antarctica is uncertain, and competing models have been suggested to explain the formation of large-scale features, such as the Transantarctic and Gamburtsev Mountains, the Wilkes and Aurora Subglacial Basins, and the West Antarctic Rift System. Using a range of different seismic imaging techniques, our research group has advanced understanding of the crustal and mantle structure beneath Antarctica and how this structure relates to the tectonic origins of these different geologic provinces. Additionally, by employing machine learning techniques, we are improving seismic event catalogs for Antarctica, which allows us to better understand both tectonic and cryospheric processes. Funding for this work has been provided by the National Science Foundation (grants OPP-1148982, OPP-1914698, PLR-1643798, and PLR-1643873).
![]() | ![]() |
![]() | (upper left) Ambient noise tomography results from Hansen and Emry (2025). (upper right) Seismicity in Victoria Land from Ho et al. (2024). (left) S-wave receiver function constraints on crustal thickness from Hansen et al. (2009). |
Antarctic-Related Papers
Hansen, S.E. and E.L. Emry, East Antarctic tectonic basin structure and its implications for ice-sheet modeling and sea-level projections, Nature Comm. Earth Environ., 6, doi: 10.1038/s43247-025-02140-4. Hansen_&_Emry_CommEE_2025.pdf
Ho, L.M., J.I. Walter, S.E. Hansen, J.L. Sanchez-Roldan, and Z. Peng, Evaluating Automated Seismic Event Detection Approaches: An Application to Victoria Land, East Antarctica, J. Geophys. Res. Machine Learn. Comp., 1, doi: 10.1029/2024JH000185. Ho_etal_JGR_2024.pdf
Emry, E.L., A.A. Nyblade, A. Horton, S.E. Hansen, J. Julia, R.C. Aster, A.D. Huerta, J.P. Winberry, D.A. Wiens, and T.J. Wilson, Prominent thermal anomalies in the mantle transition zone beneath the Transantarctic Mountains, Geology, 48, doi: 10.1130/G47346.1, 2020. Emry_etal_Geology_2020.pdf
Lloyd, A.J., D.A. Wiens, H. Zhu, J. Tromp, A.A. Nyblade, R.C. Aster, S.E. Hansen, I.W.D. Dalziel, T.J. Wilson, E.R. Ivins, and J.P. O’Donnell, Seismic Structure of the Antarctic Upper Mantle Imaged with Adjoint Tomography, J. Geophys. Res. Solid Earth, 124, doi: 10.1029/2019JB017823, 2020. Lloyd_etal_JGR_2020.pdf
White-Gaynor, A.L., A.A. Nyblade, R.C. Aster, D.A. Wiens, P.D. Bromirski, P. Gerstoft, R.A. Stephen, S.E. Hansen, T. Wilson, I.W. Dalziel, A.D. Huerta, J.P. Winberry, and S. Anandakrishnan, Heterogeneous upper mantle structure beneath the Ross Sea Embayment and Marie Byrd Land, West Antarctica, revealed by P-wave tomography, Earth Planet. Sci. Lett., 513, 40-50, doi: 10.1016/j.epsl.2019.02.013, 2019. White-Gaynor_etal_EPSL_2019.pdf
Shen, W., D.A. Wiens, S. Anandakrishnan, R.C. Aster, P. Gerstoft, P.D. Bromirski, S.E. Hansen, I.W.D. Dalziel, D.S. Heeszel, A.D. Huerta, A.A. Nyblade, R. Stephen, T.J. Wilson, and J.P. Winberry, The crustal and upper mantle structure of Central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver function data, J. Geophys. Res. Solid Earth, 123, 7824-7849, doi: 10.1029/2017JB015346, 2018. Shen_etal_JGR_2018.pdf
Shen, W., D.A. Wiens, T. Stern, S. Anandakrishnan, R.C. Aster, I. Dalziel, S.E. Hansen, D.S. Heeszel, A. Huerta, A. Nyblade, T.J. Wilson, and J.P. Winberry, Seismic evidence for lithospheric foundering beneath the southern Transantarctic Mountains, Antarctica, Geology, 46, 71-74, doi: 10.1130/G39555.1, 2017. Shen_etal_Geology_2017.pdf
Brenn, G.R., S.E. Hansen, and Y. Park, Variable thermal loading and uplift along the Transantarctic Mountains, Antarctica, Geology, 45, 463-466, doi: 10.1130/G38784.1, 2017. Brenn_etal_Geology_2017.pdf
Graw, J.H., S.E. Hansen, C. Langston, B. Young, A. Mostafanejad, and Y. Park, Assessment of Crustal and Upper Mantle Velocity Structure by Removing the Effect of an Ice Layer on the P-wave Response: An Application to Antarctic Seismic Studies, Bull. Seis. Soc. Am., 107, 639-651, doi: 10.1785/0120160262, 2017. Graw_etal_BSSA_2017.pdf
Graw, J.H. and S.E. Hansen, Upper Mantle Seismic Anisotropy beneath the Northern Transantarctic Mountains, Antarctica from PKS, SKS, and SKKS Splitting Analysis, Geochem. Geophys. Geosys., 18, 544-557, doi: 10.1002/2016GC006729, 2017. Graw_Hansen_G3_2017.pdf
Graw, J.H., A.N. Adams, S.E. Hansen, D.A. Wiens, L. Hackworth, and Y. Park, Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains, Earth Plant. Sci. Lett., 449, 48-60, doi: 10.1016/j.epsl.2016.05.026, 2016. Graw_etal_EPSL_2016.pdf
Hansen, S.E., L.M. Kenyon, J.H. Graw, Y. Park, and A.A. Nyblade, Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins, J. Geophys. Res. Solid Earth, 121, 812-825, doi:10.1002/2015/JB012325, 2016. Hansen_etal_JGR_2016.pdf
Ramirez, C., A.A. Nyblade, S.E. Hansen, D.A. Wiens, S. Anandakrishnan, R.C. Aster, A.D. Huerta, P.J. Shore, and T. Wilson, Crustal and Upper Mantle Structure beneath Ice-Covered Regions in Antarctica from S-wave Receiver Functions and Implications for Heat Flow, Geophys. J. Int., 204, 1636-1648, doi: 10.1093/gji/ggv542, 2016. Ramirez_etal_GJI_2016.pdf
Hansen, S.E., A. Reusch, T. Parker, D. Bloomquist, P. Carpenter, J.H. Graw, and G.R. Brenn, The Transantarctic Mountains Northern Network (TAMNNET): Deployment and Performance of a Seismic Array in Antarctica, Seism. Res. Lett., 86, 1636-1644, doi: 10.1785/0220150117, 2015. Hansen_etal_SRL_2015.pdf
Hansen, S.E., J.H. Graw, L.M. Kenyon, A.A. Nyblade, D.A. Wiens, R.C. Aster, A.D. Huerta, S. Anandakrishnan, and T. Wilson, Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: Evidence for heterogeneous structure beneath West Antarctica, Earth Planet. Sci. Lett., 408, 66-78, doi: 10.1016/j.epsl.2014.09.043, 2014. Hansen_etal_EPSL_2014.pdf
Heeszel, D.S., D.A. Wiens, A.A. Nyblade, S.E. Hansen, M. Kanao, M. An, and Y. Zhao, Rayleigh wave constraints on the structure and tectonic history of the Gamburtsev Subglacial Mountains, East Antarctica, J. Geophys. Res. Solid Earth, 118, 2138-2153, doi: 10.1002/jgrb.50171, 2013. Heeszel_etal_JGR_2013.pdf
Lloyd, A.J., A.A. Nyblade, D.A. Wiens, P.J. Shore, S.E. Hansen, M. Kanao, and D. Zhao, Upper mantle seismic structure beneath central East Antarctica from body wave tomography: Implications for the origin of the Gamburtsev Subglacial Mountains, Geochem. Geophys. Geosys., 14, 902-920, doi: 10.1002/ggge.20098, 2013. Lloyd_etal_G3_2013.pdf
Kanao, M., S.E. Hansen, K. Kamiyama, D. Wiens, T. Higashi, A.A. Nyblade, A. Watanabe, Crustal structure from the Lützow-Holm Bay to the inland plateau of East Antarctica, based on gravity surveys and broadband seismic deployments, Tectonphys., 572-573, 100-110, doi: 10.1016/j.tecto.2012.01.014, 2012. Kanao_etal_Tectonophysics_2012.pdf
Hansen, S.E., A.A. Nyblade, D. Heeszel, D.A. Wiens, P. Shore, and M. Kanao, Crustal Structure of the Gamburtsev Mountains, East Antarctica, from S-wave Receiver Functions and Rayleigh Wave Phase Velocities, Earth Planet. Sci. Lett., 300, 395-401, doi: 10.1016/j.epsl.2010.10.022, 2010. Hansen_etal_EPSL_2010.pdf
Hansen, S.E., J. Julià, A.A. Nyblade, M.L. Pyle, D.A. Wiens, and S. Anandakrishnan, Using S wave receiver functions to estimate crustal structure beneath ice sheets: An application to the Transantarctic Mountains and East Antarctic craton, Geochem. Geophys. Geosyst., 10, Q08014, doi: 10.1029/2009GC002576, 2009b. Hansen_etal_G3_2009.pdf