2015-Present
A. Wrist, W. Sun, and R.M. Summers. 2020. The theophylline aptamer: 25 years as an important tool in cellular engineering research. ACS Synth Biol 9(4):682-697. doi: 10.1021/acssynbio.9b00475.
J.H. Kim, B.H. Kim, S. Brooks, S.Y. Kang, R.M. Summers, and H.K. Song. 2019. Structural and mechanistic insights into caffeine degradation by the bacterial N-demethylase complex. J Mol Biol 431(19):3647-3661. doi: 10.1016/j.mb.2019.08.004.
K.H.R. Algharrawi, R.M. Summers, and M. Subramanian. 2017. Production of theobromine by N-demethylation of caffiene using metabolically engineered E. coli. Biocatal Agric Biotechnol 11:153-160. doi: 10.1016/j.bcab.2017.06.014.
C.L. Yu, S. Brooks, Y. Li, M. Subramanian, R. Summers, and M. Pope. 2017. Rapid proteomics to prospect and validate novel bacterial metabolism induced by environmental burden. Method Enzymol 586:379-411. doi: 10.1016/bs.mie.2016.11.003.
K.H.R. Algharrawi, R.M. Summers, S. Gopishetty, and M. Subramanian. 2015. Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli. Microb Cell Fact 14(1):203. doi: 10.1186/s12934-015-0395-1.
E.M. Quandt, R.M. Summers, M. Subramanian, and J.E. Barrick. 2015. Draft genome sequence of the bacterium Pseudomonas putida CBB5, which can utilize caffeine as a sole carbon and nitrogen source. Genome Announc 3(3):00640-15. doi: 10.1128/genomeA.00640-14.
R.M. Summers, S.K. Mohanty, S. Gopishetty, and M. Subramanian. 2015. Genetic characterization of caffeine degradation by bacteria and its potential applications. Microbial Biotechnol. doi: 10.1111/1751-7915.12262.
C.L. Yu, R.M. Summers, Y. Li, S.K. Mohanty, M. Subramanian, and R.M. Pope. 2015. Rapid identification and quantitative validation of a caffeine-degrading pathway in Pseudomonas sp. CES. J Proteome Res 14(1):95-106. doi:10.1021/pr500751w.
2009-2014
R.M. Summers, S. Gopishetty, S.K. Mohanty, and M. Subramanian. 2014. New genetic insights to consider coffee waste as feedstock for fuel, feed, and chemicals. Cent Eur J Chem. 12(12):1271-1279. doi: 10.2478/s11532-014-0550-2.
S. Nagarajan, A.L. Kruckeberg, K.H. Schmidt, E. Kroll, M. Hamilton, K. McInnerney, R. Summers, T. Taylor, and F. Rosenzweig. 2015. Uncoulpling reproduction from metabolism extends chronological lifespan in yeast. Proc Natl Acad Sci USA 111(15):E1538-E1547. doi: 10.1073/pnas.1323918111.
R.M. Summers, C.L. Yu, E. Quandt, J. Barrick, and M. Subramanian. 2014. Caffeine junkie: An unprecedented GST-dependent oxygenase required for caffeine degradation by Pseudomonas putida CBB5. J Bacteriol 195(17):3933-3939. doi: 10.1128/JB.00585-13.
E.M. Quandt, M.J. Hammerling, R.M. Summers, P.B. Otoupal, B. Slater, R.N. Alnahhas, A. Dasgupta, J.L. Bachman, M.V. Subramanian, and J.E. Barrick. 2013. Decaffeination and measurement of caffeine content by addicted Escherichia coli with a refactored N-demethylation operon from Pseudomonas putida CBB5. ACS Synth Biol 2(6):301-307. doi: 10.1021/sb4000146.
J.A. Moreno-Cid Mora, S. Gopishetty, J. Xu, R. Summers, M. Canales, J. de la Fuente, and M. Subramanian. 2013. Application of simulated moving bed chromatography for protein purification: Case study with caffeine-N-demethylase B from Pseudomonas putida CBB5. Advances in Biotechnology, Stadium Press LLC USA, Eds. H.N. Thatoi and B.B. Mishra. Pages 1-13.
R.M. Summers, T.M. Louie, C.L. Yu, L. Gakhar, K. Louie, and M. Subramanian. 2012. Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids. J Bacteriol 194(8):2041-2049. doi: 10.1128/JB.06637-11.
***Spotlight feature titled “The (Microbial) Caffeine Diet Explained” in Microbe 7(5):238.
R.M. Summers, T.M. Louie, C.L. Yu, M. Subramanian. 2011. Characterization of a broad speceficity non-haeme iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology 157:583-592. doi: 10.1099/mic.0.043612-0.
C.L. Yu, T.M. Louie, R. Summers, Y. Kale, S. Gopishetty, and M. Subramanian. 2009. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. J Bacteriol 191(14):4624-4632. doi:10.1128/JB.00409-09.
Links for popular press articles regarding Dr. Summers’s research