Book

  1. Yuan, S. and Yang, B., 2025. Cable-Network Structures: Form Finding, Optimal Design and Shape Control. Elsevier. doi: 10.1016/C2021-0-02847-9

Book Chapter

  1. Yuan, S. and Yang, B., 2022. A New strategy for form finding and optimal design of space cable network structures. In Nonlinear Approaches in Engineering Application: Design Engineering Problems (pp. 245-285). Cham: Springer International Publishing. doi 10.1007/978-3-030-82719-9_6

Journal Papers

  1. Zhang, D., Zhang, Y., Yuan, S., Tang, J., Wang, Z. and Zhou, K., 2025. Novel inverse multi-objective optimization-empowered design of microperforated panels for enhanced low-frequency noise mitigation. Journal of Vibration Engineering & Technologies13(8), pp.1-20. doi: 10.1007/s42417-025-02139-3
  2. Tan, N., Zhang, J., Kazoleas, C., Zhu, W., Zhou, K. and Yuan, S.*, 2025. Dynamic Modeling and Vibrations of Large Deployable Mesh Reflectors. Applied Mathematical Modelling, p.116329. doi: 10.1016/j.apm.2025.116329
  3. Yuan, K., Yuan, S. and Zhu, W.*, 2024. Full-field Modal Analysis of a Tensegrity Column Using a Three-dimensional Scanning Laser Doppler Vibrometer with a Mirror. Journal of Vibration and Acoustics, 146(6), p.061101. doi: 10.1115/1.4067079
  4. Yuan, S.* and Zhu, W., 2023. A Cartesian spatial discretization method for nonlinear dynamic modeling and vibration analysis of tensegrity structures. International Journal of Solids and Structures, 270, p.112179. doi: 10.1016/j.ijsolstr.2023.112179
  5. Zhou, K.*, Wang, Z., Gao, Q., Yuan, S. and Tang, J., 2023. Recent advances in uncertainty quantification in structural response characterization and system identification. Probabilistic Engineering Mechanics, p.103507. doi: 10.1016/j.probengmech.2023.103507
  6. Mehditabar, A., Razmkhah, S., Sadrabadi, S.A.*, Peng, X., Yuan, S. and Abot, J.L., 2023. Three-dimensional thermoelastic analysis of a functionally graded truncated conical shell with piezoelectric layers. International Journal of Computational Materials Science and Engineering, 12(03), p.2350003. doi: 10.1142/S2047684123500033
  7. Yuan, S.*, 2022. Review of root-mean-square error calculation methods for large deployable mesh reflectors. International Journal of Aerospace Engineering, 2022. doi: 10.1155/2022/5352146
  8. Ansari Sadrabadi, S.*, Dadashi, A., Yuan, S., Giannella, V. and Citarella, R., 2022. Experimental-numerical investigation of a steel pipe repaired with a composite sleeve. Applied Sciences, 12(15), p.7536. doi: 10.3390/app12157536
  9. Yuan, S.* and Zhu, W., 2021. Optimal self-stress determination of tensegrity structures. Engineering Structures, 238, p.112003. doi: 10.1016/j.engstruct.2021.112003
  10. Yuan, S.* and Jing, W., 2021. Optimal shape adjustment of large high-precision cable network structures. AIAA Journal, 59(4), pp.1441-1456. doi: 10.2514/1.J059989
  11. Yuan, S.*, Yang, B. and Fang, H., 2019. Self-standing truss with hard-point-enhanced large deployable mesh reflectors. AIAA Journal, 57(11), pp.5014-5026. doi: 10.2514/1.J058446
  12. Yuan, S. and Yang, B.*, 2019. The fixed nodal position method for form finding of high-precision lightweight truss structures. International journal of Solids and Structures, 161, pp.82-95. doi: 10.1016/j.ijsolstr.2018.11.011
  13. Yuan, S., Yang, B.* and Fang, H., 2018. The Projecting Surface Method for improvement of surface accuracy of large deployable mesh reflectors. Acta Astronautica, 151, pp.678-690. doi: 10.1016/j.actaastro.2018.07.005
  14. Shi, H., Yuan, S. and Yang, B.*, 2018. New methodology of surface mesh geometry design for deployable mesh reflectors. Journal of Spacecraft and Rockets, 55(2), pp.266-281. doi: 10.2514/1.A33867
  15. 11. Zhang, H., Luan, N.*, Zhang, S., Gui, H., and Yuan, S., 2012. Cooperative Control of Cranio-maxillofacial Surgical Robot Based on Force-feedback. Machinery & Electronics, 5, pp.018.

​​* Corresponding Author

Conference Proceedings

  1. Kazoleas, C., Zhang, J. and Yuan, S., 2025, May. Tensiworm: A Novel Tensegrity Robot with Enhanced Peristaltic Locomotion Efficiency. In 2025 IEEE International Conference on Robotics and Automation (ICRA) (pp. 11645-11652). IEEE. doi: 10.1109/ICRA55743.2025.11127767
  2. Zhang, D., Assouar, B., Yuan, S. and Zhou, K., 2025, May. Analysis of the multilayer microperforated panel for enhanced noise absorption using numerical and experimental approaches. In Multifunctional Materials and Structures (Vol. 13433, pp. 186-196). SPIE. doi: 10.1117/12.3045225
  3. Orr, L., Champion, M., Donahue, K., Kazoleas, C., Zhang, J., Tan, N. and Yuan, S., 2025. Aranea Debris Interceptor-A Biomimetic Approach to Orbital Debris Mitigation. In AIAA SCITECH 2025 Forum (p. 0181). doi: 10.2514/6.2025-0181
  4. Kazoleas, C., Zhang, J., Tan, N. and Yuan, S., 2024, August. Design and Fabrication of a Deployable Tensegrity Millirobot for Next-Generation Gastrointestinal Diagnostics and Treatment. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 88414, p. V007T07A034). American Society of Mechanical Engineers. doi: 10.1115/DETC2024-142947
  5. Yuan, K., Yuan, S. and Zhu, W., 2024, August. Experimental Study on Dynamic Characteristics of a Tensegrity Structure Using a 3D SLDV System. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 88452, p. V011T11A019). American Society of Mechanical Engineers. doi: 10.1115/DETC2024-143590
  6. Tan, N., Woo, D.O., Zhou, K., Kazoleas, C., Zhang, J. and Yuan, S., 2024. On-Orbit Dynamic Thermal Modeling of Large Deployable Mesh Reflectors. In AIAA SCITECH 2024 Forum (p. 2040). doi: 10.2514/6.2024-2040
  7. Kazoleas, C., Mehta, K. and Yuan, S., 2022, October. Prototype Design and Manufacture of a Deployable Tensegrity Microrobot. In ASME International Mechanical Engineering Congress and Exposition (Vol. 86649, p. V02BT02A055). American Society of Mechanical Engineers. doi: 10.1115/IMECE2022-93929
  8. Yuan, S. and Zhu, W., 2022, October. A New Approach to Nonlinear Dynamic Modeling and Vibration Analysis of Tensegrity Structures. In ASME International Mechanical Engineering Congress and Exposition (Vol. 86670, p. V005T07A104). American Society of Mechanical Engineers. doi: 10.1115/IMECE2022-94746
  9. Yuan, S., Jing, W. and Jiang, H., 2021, November. A deployable tensegrity microrobot for minimally invasive interventions. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85598, p. V005T05A061). American Society of Mechanical Engineers. doi: 10.1115/IMECE2021-67009
  10. Yuan, S. and Yang, B., 2021. Shape adjustment of large deployable mesh reflectors under thermal strain. In AIAA SciTech 2021 Forum (p. 1148). doi: 10.2514/6.2021-1148
  11. Yuan, S., Yang, B. and Fang, H., 2020. Direct root-mean-square error for surface accuracy evaluation of large deployable mesh reflectors. In AIAA SciTech 2020 Forum (p. 0935). doi: 10.2514/6.2020-0935
  12. Yuan, S., Yang, B. and Fang, H., 2019. Enhancement of large deployable mesh reflectors by the self-standing truss with hard-points. In AIAA Scitech 2019 Forum (p. 0752). doi: 10.2514/6.2019-0752
  13. Yuan, S., Yang, B. and Fang, H., 2018. Form-finding of large deployable mesh reflectors with elastic deformations of supporting structures. In 2018 AIAA spacecraft structures conference (p. 1198). doi: 10.2514/6.2018-1198
  14. Yuan, S. and Yang, B., 2016, February. Design and optimization of tension distribution for space deployable mesh reflectors. In 26th AAS/AIAA space flight mechanics meeting (Vol. 158, pp. 765-776). Napa, CA: Univelt.
  15. Yuan, S., Yang, B. and Fang, H., 2016. Improvement of surface accuracy for large deployable mesh reflectors. In AIAA/AAS Astrodynamics Specialist Conference (p. 5571). doi: 10.2514/6.2016-5571
  16. Yuan, S., Zhang, H., Wang, N. and Luan, N., 2011, September. Motion study of a redundant 7-DOF operation robot. In 2011 international conference on electrical and control engineering (pp. 3056-3060). IEEE. doi: 10.1109/ICECENG.2011.6057382